ABSTRACT:
Banks play a crucial role in the economy. Consequently, systemic banking crises destabilize financial markets and hinder global economic growth. In this study, machine learning was used to predict bank distress in the Indonesian banking sector. Key variables relevant to the banking sector were identified. The data, spanning the period 2019 to 2023, was collected from Indonesian banks listed on the Indonesia Stock Exchange (IDX). Random Forest (RF) and XGBoost (XGB) models were employed to develop predictive frameworks, with their performance evaluated using overall prediction accuracy (OPA), Type I error, and Type II error. The results showed that the RF model outperformed the XGB model, achieving the highest accuracy and completely eliminating Type II errors. This study highlights the potential of machine learning to improve early warning systems for financial distress, contributing to the stability of the banking sector and the resilience of the economy.
KEYWORDS:
Financial Distress, Bank, Machine Learning, XGBoost, Random Forest.
REFERENCES:
1) Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589–609. https://doi.org/10.2307/2978933
2) World Bank. (2020). Global economic prospects. World Bank Group.
3) Barboza, F., & Altman, E. (2024). Predicting financial distress in Latin American companies: A comparative analysis of logistic regression and random forest models. The North American Journal of Economics and Finance, 72, 102158. https://doi.org/https://doi.org/10.1016/j.najef.2024.102158
4) Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405–417. https://doi.org/https://doi.org/10.1016/j.eswa.2017.04.006
5) Benston, G. J., & Kaufman, G. G. (1995). Is the banking and payments system fragile? Journal of Financial Services Research, 9(3–4). https://doi.org/10.1007/BF01051747
6) Bhattacharya, S., Boot, A. W. A., & Thakor, A. V. (1998). The Economics of Bank Regulation. Journal of Money, Credit and Banking, 30(4). https://doi.org/10.2307/2601127
7) Bräuning, M., Malikkidou, D., Scalone, S., & Scricco, G. (2020). A New Approach to Early Warning Systems for Small European Banks. In G. Nicosia, V. Ojha, E. La Malfa, G. Jansen, V. Sciacca, P. Pardalos, G. Giuffrida, & R. Umeton (Eds.), Machine Learning, Optimization, and Data Science (pp. 551–562). Springer International Publishing.
8) Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
9) Canbas, S., Cabuk, A., & Kilic, S. B. (2005). Prediction of commercial bank failure via multivariate statistical analysis of financial structures: The Turkish case. European Journal of Operational Research, 166(2), 528–546. https://doi.org/https://doi.org/10.1016/j.ejor.2004.03.023
10) Carmona, P., Climent, F., & Momparler, A. (2019). Predicting failure in the U.S. banking sector: An extreme gradient boosting approach. International Review of Economics & Finance, 61, 304–323. a. https://doi.org/https://doi.org/10.1016/j.iref.2018.03.008
11) Chawla, N. V. (2005). Data Mining for Imbalanced Datasets: An Overview. In O. Maimon & L. Rokach (Eds.), Data Mining and Knowledge Discovery Handbook (pp. 853–867). Springer US. https://doi.org/10.1007/0-387-25465-X_40
12) Chemura, A., Rwasoka, D., Mutanga, O., Dube, T., & Mushore, T. (2020). The impact of land-use/land cover changes on water balance of the heterogeneous Buzi sub-catchment, Zimbabwe. Remote Sensing Applications: Society and Environment, 18, 100292. https://doi.org/https://doi.org/10.1016/j.rsase.2020.100292
13) Chou, T.-N. (2019). An Explainable Hybrid Model for Bankruptcy Prediction Based on the Decision Tree and Deep Neural Network. 2019 IEEE 2nd International Conference on Knowledge Innovation and Invention (ICKII), 122–125. https://doi.org/10.1109/ICKII46306.2019.9042639
14) Florez-Lopez, R. (2007). Modelling of insurers’ rating determinants. An application of machine learning techniques and statistical models. European Journal of Operational Research, 183(3), 1488–1512. a. https://doi.org/https://doi.org/10.1016/j.ejor.2006.09.103
15) IMF. (1998). World Economic Outlook. Financial Crises: Causes and Indicators. International Monetary Fund Washington, DC.
16) Gregova, E., Valaskova, K., Adamko, P., Tumpach, M., & Jaros, J. (2020). Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods. Sustainability, 12(10). https://doi.org/10.3390/su12103954
17) Greuning, H. Van, & Iqbal, Z. (2007). Banking and the risk environment. Islamic Finance: The Regulatory Challenge, 9–39.
18) Irvan, F., & Supriyanto, R. (2024). Comparative Analysis Of Machine Learning And Deep Learning Models Integrated With Altman Z-Score For Financial Distress Prediction In Companies Listed On The Indonesia Stock Exchange (IDX). EKOMBIS REVIEW: Jurnal Ilmiah Ekonomi Dan Bisnis, 12(2). https://doi.org/10.37676/ekombis.v12i2.5478
19) Kristanti, F. T., Febrianta, M. Y., Salim, D. F., Riyadh, H. A., & Beshr, B. A. H. (2024). Predicting Financial Distress in Indonesian Companies using Machine Learning. Technology & Applied Science Research, 14(6), 17644–17649. https://doi.org/10.48084/etasr.8520
20) Kruppa, J., Schwarz, A., Arminger, G., & Ziegler, A. (2013). Consumer credit risk: Individual probability estimates using machine learning. Expert Systems with Applications, 40(13), 5125–5131. a. https://doi.org/https://doi.org/10.1016/j.eswa.2013.03.019
21) Laeven, L. (2011). Banking crises: A review. Annual Review of Financial Economics, 3. https://doi.org/10.1146/annurev-financial-102710-144816
22) Mahardini, N. Y., Bandi, B., Payamta, & Honggowati, S. (2022). Financial Distress and Bankruptcy Prediction Research in Indonesia: Last 20 Years. Proceedings of the International Colloquium on Business and Economics (ICBE 2022), 231–240. https://doi.org/10.2991/978-94-6463-066-4_20
23) Maione, C., de Paula, E. S., Gallimberti, M., Batista, B. L., Campiglia, A. D., Jr, F. B., & Barbosa, R. M. (2016). Comparative study of data mining techniques for the authentication of organic grape juice based on ICP-MS analysis. Expert Systems with Applications, 49, 60–73. https://doi.org/https://doi.org/10.1016/j.eswa.2015.11.024
24) Malakauskas, A., & Lakstutiene, A. (2021). Financial distress prediction for small and medium enterprises using machine learning techniques. Engineering Economics, 32(1), 4–14. https://doi.org/10.5755/j01.ee.32.1.27382
25) Martin, D. (1977). Early warning of bank failure: A logit regression approach. Journal of Banking & Finance, 1(3), 249–276. https://doi.org/https://doi.org/10.1016/0378-4266(77)90022-X
26) Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1), 109–131. https://doi.org/10.2307/2490395
27) Patrous, Z. S. (2018). Evaluating XGBoost for User Classification by using Behavioral Features Extracted from Smartphone Sensors. KTH Royal Institute of Technology.
28) Paule-Vianez, J., Gutiérrez-Fernández, M., & Coca-Pérez, J. L. (2020). Prediction of financial distress in the Spanish banking system: An application using artificial neural networks. Applied Economic Analysis, 28(82), 69–87. https://doi.org/10.1108/AEA-10-2019-0039
29) Platt, H. D., & Platt, M. B. (2008). Financial Distress Comparison Across Three Global Regions. Journal of Risk and Financial Management, 1(1), 129–162. https://doi.org/10.3390/jrfm1010129
30) Purwanti, L., Arief Effendi, S., Ibrahim, M., Tam Cahyadi, R., & Prakoso, A. (2024). Prediction and Comparison of Bankruptcy Models in Banking Sector Companies in Indonesia. Educational Administration: Theory and Practice, 30(4), 4428–4440. https://doi.org/10.53555/kuey.v30i4.2224
31) Rahman, M. J., & Zhu, H. (2024). Predicting financial distress using machine learning approaches: Evidence China. Journal of Contemporary Accounting & Economics, 20(1), 100403. a. https://doi.org/https://doi.org/10.1016/j.jcae.2024.100403
32) Rajan, R. G., & Zingales, L. (1998). Power in a theory of the firm. Quarterly Journal of Economics, 113(2). https://doi.org/10.1162/003355398555630
33) Shen, F., Liu, Y., Wang, R., & Zhou, W. (2020). A Dynamic Financial Distress Forecast Model with Multiple Forecast Results under Unbalanced Data Environment. Knowledge-Based Systems, 192, 105365. a. https://doi.org/https://doi.org/10.1016/j.knosys.2019.105365
34) Shrivastava, S., Jeyanthi, P. M., & Singh, S. (2020). Failure prediction of Indian Banks using SMOTE, Lasso regression, bagging and boosting. Cogent Economics & Finance, 8(1). https://doi.org/10.1080/23322039.2020.1729569
35) Sun, Y., Wong, A. K. C., & Kamel, M. S. (2009). Classification of Imbalanced Data: A Review. International Journal of Pattern Recognition and Artificial Intelligence, 23(04), 687–719. https://doi.org/10.1142/S0218001409007326
36) Thomson, J. (1991). Predicting bank failures in the 1980s. Economic Review, 27(Q I), 9–20. https://EconPapers.repec.org/RePEc:fip:fedcer:y:1991:i:qi:p:9-20:n:v.27no.1
37) Wang, G., Ma, J., & Yang, S. (2014). An improved boosting based on feature selection for corporate bankruptcy prediction. Expert Systems with Applications, 41(5), 2353–2361. a. https://doi.org/https://doi.org/10.1016/j.eswa.2013.09.033