A Bibliometric Analysis of the Financial Fraud Detection Literature from 2004 To 2024
1Moh Faris Nur Wahib, 2Abdul Rohman
1,2Faculty of Economics and Business, Diponegoro University, Semarang, Indonesia
https://doi.org/10.47191/jefms/v7-i9-39ABSTRACT:
This paper examines the literature on financial fraud detection, using a bibliometric analysis of 386 documents published between 2004 and 2024, utilizing the Bibliometrix R package. The documents were sourced from 218 outlets including books, conferences, and journals, by searching the Scopus database using mesh terms with the Boolean operators “AND” and “OR” to combine and include synonyms of relevant terms. The content analysis identified 1186 author keywords and 530 Keywords Plus. The dataset consists of 842 authors with a collaboration rate of 18.65 and an average citation per document of 15.49. Publication trends show a significant increase in research on financial fraud detection, with key sources including the Journal of Financial Crime and the Journal of Money Laundering Control. Influential authors include Gottschalk P and Naheem MA, with major affiliations such as BI Norwegian Business School and Beijing Normal University. Keyword analysis highlights "financial crime" and "fraud" as main focuses, with technologies like "machine learning" and "artificial intelligence" playing crucial roles in fraud detection. Thematic mapping indicates that advanced technologies complement traditional methods in detecting and preventing fraud, with blockchain and cryptocurrency emerging as promising areas for future research. The United States, China, and the United Kingdom are the leading contributors to this research field.
KEYWORDS:
Financial Fraud; Fraud Detection; Fraud Identification; Bibliometric Analysis; R Packages
REFERENCES:
1) Abbas, A. F., Jusoh, A., Mas’od, A., Alsharif, A. H., & Ali, J. (2022). Bibliometrix analysis of information sharing in social media. Cogent Business and Management, 9(1). https://doi.org/10.1080/23311975.2021.2016556
2) Abbasi, A., Albrecht, C., Vance, A., & Hansen, J. (2012). MetaFraud: A Meta-Learning Framework for Detecting Financial Fraud. 36(4), 1293–1327.
3) Ahmed, F., Zapata, O., & Poelzer, G. (2024). Sustainability in the arctic: a bibliometric analysis. Discover Sustainability, 5(1). https://doi.org/10.1007/s43621-024-00312-4
4) Ai, S., Li, Y., Zheng, H., Zhang, M., Tao, J., Liu, W., Peng, L., Wang, Z., & Wang, Y. (2024). Collision of herbal medicine and nanotechnology: a bibliometric analysis of herbal nanoparticles from 2004 to 2023. Journal of Nanobiotechnology, 22(1), 1–28. https://doi.org/10.1186/s12951-024-02426-3
5) Altarturi, H. H. M., Nor, A. R. M., Jaafar, N. I., & Anuar, N. B. (2023). A bibliometric and content analysis of technological advancement applications in agricultural e-commerce. In Electronic Commerce Research (Issue 0123456789). Springer US. https://doi.org/10.1007/s10660-023-09670-z
6) Bertomeu, J., Cheynel, E., Floyd, E., & Pan, W. (2021). Using machine learning to detect misstatements. Review of Accounting Studies, 26(2), 468–519. https://doi.org/10.1007/s11142-020-09563-8
7) Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146–166. https://doi.org/10.1016/j.joi.2010.10.002
8) Croall, H. (2004). Combating financial crime: regulatory versus crime control approaches. Journal of Financial Crime, 11(1), 45–55. https://doi.org/10.1108/13590790410809031
9) Firth, M., Rui, O. M., & Wu, W. (2011). Cooking the books: Recipes and costs of falsified financial statements in China. Journal of Corporate Finance, 17(2), 371–390. https://doi.org/10.1016/j.jcorpfin.2010.09.002
10) Fitri, F. A., Syukur, M., & Justisa, G. (2019). Do the fraud triangle components motivate fraud in Indonesia? Australasian Accounting, Business and Finance Journal, 13(4), 63–72. https://doi.org/10.14453/aabfj.v13i4.5
11) Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of financial statement fraud–A comparative study of machine learning methods. Knowledge-Based Systems, 128,139–152. https://doi.org/10.1016/j.knosys.2017.05.001
12) Humpherys, S. L., Moffitt, K. C., Burns, M. B., Burgoon, J. K., & Felix, W. F. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50(3), 585–594. https://doi.org/10.1016/j.dss.2010.08.009
13) Karpoff, J. M., Koester, A., Lee, D. S., & Martin, G. S. (2017). Proxies and databases in financial misconduct research. In Accounting Review (Vol. 92, Issue 6). https://doi.org/10.2308/accr-51766
14) Karpoff, J. M., & Lou, X. (2010). Short sellers and financial misconduct. Journal of Finance, 65(5), 1879–1913. https://doi.org/10.1111/j.1540-6261.2010.01597.x
15) Karpoff, J. M., Scott Lee, D., & Martin, G. S. (2008). The consequences to managers for financial misrepresentation. Journal of Financial Economics, 88(2), 193–215. https://doi.org/10.1016/j.jfineco.2007.06.003
16) Madsen, D. Ø., Berg, T., & Di Nardo, M. (2023). Bibliometric Trends in Industry 5.0 Research: An Updated Overview. Applied System Innovation, 6(4), 1–14. https://doi.org/10.3390/asi6040063
17) Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559– 569. https://doi.org/10.1016/j.dss.2010.08.006
18) Ravisankar, P., Ravi, V., Raghava Rao, G., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50(2), 491–500. https://doi.org/10.1016/j.dss.2010.11.006
19) Repousis, S. (2016). Using Beneish model to detect corporate financial statement fraud in Greece. Journal of Financial Crime, 23(4), 1063–1073. https://doi.org/10.1108/JFC-11-2014-0055
20) Risdiawan, H., & Sudaryono, E. A. (2024). Exploring the Nexus: Bibliometric Analysis of Tax Avoidance and Investment Efficiency. Journal of Economics, Finance and Management Studies, 7(5), 2840–2849. https://doi.org/https://doi.org/10.47191/jefms/v7-i5-56
21) Setiorini, K. R., Rahmawati, Payamta, & Hartoko, S. (2022). The pentagon fraud theory perspective: understanding of motivation of executives to manipulate with the financial statements of a state-owned enterprise. Economic Annals-XXI, 194(11–12), 104–110. https://doi.org/10.21003/ea.V194-13
22) Sun, Y., Zeng, X., Xu, Y., Yue, H., & Yu, X. (2024). An intelligent detecting model for financial frauds in Chinese A- share market. Economics and Politics, 36(2), 1110–1136. https://doi.org/10.1111/ecpo.12283
23) Suryani, E., & Fajri, R. R. (2022). Fraud Triangle Perspective: Artificial Neural Network Used in Fraud Analysis. Quality - Access to Success, 23(188), 154–162. https://doi.org/10.47750/QAS/23.188.22
24) Tarjo, T., Anggono, A., Prasetyono, P., Yuliana, R., & Sakti, E. (2022). Association between fraudulent financial reporting, readability of annual reports, and abusive earnings management: A case of Indonesia. Investment Management and Financial Innovations, 19(1), 370–378. https://doi.org/10.21511/imfi.19(1).2022.29
25) Trompeter, G., & Wright, A. (2010). The world has changed - Have analytical procedure practices? Contemporary Accounting Research, 27(2), 669–700. https://doi.org/10.1111/j.1911-3846.2010.01021.x
26) Widiastuti, R., Haris, Z. A., & Melani, E. (2019). Is there an indication of financial statement fraud as a result of the ore export policy? International Journal of Recent Technology and Engineering, 8(2 Special Issue 9), 562–566. https://doi.org/10.35940/ijrte.B1117.0982S919
27) Zack, G. M. (2013). Financial statement fraud. In John Wiley & Sons, Inc., Hoboken, New Jersey. https://doi.org/10.4324/9781003200383-17
28) Zhou, W., & Kapoor, G. (2011). Detecting evolutionary financial statement fraud. Decision Support Systems, 50(3), 570– 575. https://doi.org/10.1016/j.dss.2010.08.007