Sharia Bank of Indonesia Stock Price Prediction using Long Short-Term Memory
1Fahmi Poernamawatie,2I Nyoman Susipta,3Dwi Winarno
1,2,3 Gajayana University, Malang
https://doi.org/10.47191/jefms/v7-i7-94ABSTRACT:
This study explored the applicability of Long Short-Term Memory (LSTM) networks for predicting the closing prices of Sharia Bank of Indonesia stock. Utilizing historical data and a rigorous hyperparameter tuning process, the LSTM model demonstrated exceptional accuracy in forecasting closing prices, achieving a Mean Absolute Percentage Error (MAPE) of 2.46%. This significantly surpasses the benchmark for "very good" forecasting performance. The findings underscore the potential of LSTM networks for accurate stock price prediction and provide a foundation for future research to incorporate additional financial indicators and explore more complex model architectures.
KEYWORDS:
Stock Price Prediction, LSTM, Forecasting, Sharia Bank of Indonesia, Hyperparameter Tuning
REFERENCES:
1) Hartini, H., & Marhandrie, D. (2022). Pengaruh Profitabilitas, Risiko Finansial dan Harga Saham Terhadap Nilai Perusahaan Bank Syariah Indonesia (BSI) Di BEI Periode Tahun 2014-2021. Jurnal Ilmiah Ekotrans & Erudisi, Vol. 2, No. 1, Hal. 104-111
2) Nugraha, E. S., & Sulasmiyati, S. (2017). Analisis Nilai Intrinsik Saham Dengan Relative Valuation Techniques (Studi Pada Perusahaan Sub Sektor Rokok yang Terdaftar di Bursa Efek Indonesia Periode 2013–2016). Jurnal Administrasi Bisnis, Vol. 52, No. 1, Hal. 106-113.
3) S. M. Idrees, M. A. Alam, and P. Agarwal, “A Prediction Approach for Stock Market Volatility Based on Time Series Data,” IEEE Access, vol. 7, pp. 17287–17298, 2019
4) S. Siami-Namini, N. Tavakoli, and A. Siami Namin, “A Comparison of ARIMA and LSTM in Forecasting Time Series,” Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018, pp. 1394–1401, Jan. 2019
5) T. Gao, Y. Chai, and Y. Liu, “Applying long short term momory neural networks for predicting stock closing price,” Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS, vol. 2017-November, pp. 575–578, Apr. 2018
6) Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
7) Chang, P. C., Wang, Y. W., and Liu, C. H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, Vol. 32, No. 1, Hal. 86-96.