The Impact of Perceived Ease of use and Customer Trust on Service Attractiveness: Investigating the Moderating Effect of Age in Digital Healthcare Service
1Nurmiftah Salsabila, 2Sulhaini
1Bachelor of Management, Faculty of Economics and Business, University of Mataram, Indonesia
2Faculty of Economics and Business, University of Mataram, Indonesia
https://doi.org/10.47191/jefms/v7-i12-62
ABSTRACT:
Customer expectations for ease of use and trust when using digital healthcare services have also increased, urging the need to understand how these factors may impact service attractiveness. The study aims to test how ease of use and trust impact service attractiveness in the Halodoc application and whether older users can boost demand in the digital healthcare sector. The findings are that trust strongly impacts the old age group. The study also found that age affects the relationship between perceived ease of use and service attractiveness, as well as between trust and service attractiveness.
KEYWORDS:
Perceived Ease of Use, Customer Trust, Service Attractiveness, Digital Healthcare Service, Halodoc.
REFERENCES:
1) Akarsu, T. N., Foroudi, P., & Melewar, T. C. (2020). What makes Airbnb likeable? Exploring the nexus between service attractiveness, country image, perceived authenticity and experience from a social exchange theory perspective within an emerging economy context. International Journal of Hospitality Management, 91. https://doi.org/10.1016/j.ijhm.2020.102635
2) Alharbi, A., Alzuwaed, J., & Qasem, H. (2021). Evaluation of e-health ( Seha ) application: a cross-sectional study in Saudi Arabia. 1–9.
3) Alismail, S., & Zhang, H. (2018). The use of emoji in electronic user experience questionnaire: An exploratory case study. Proceedings of the Annual Hawaii International Conference on System Sciences, 2018-Janua(January 2018), 3366–3375. https://doi.org/10.24251/hicss.2018.427
4) Alyamani, I. M. (2019). The challenges and solutions to improve health technology use among older adults. 3, 436–443.
5) Bae, H., Jo, S. H., & Lee, E. (2021). Why do older consumers avoid innovative products and services? Journal of Services Marketing, 35(1), 41–53. https://doi.org/10.1108/JSM-10-2019-0408
6) Baur, A., Yew, H., & Xin, M. (2021). The future of healthcare in Asia: Digital health ecosystems Asia is paving the way for digital health ecosystems, and potential ecosystem orchestrators can generate value by taking bold, strategic actions.
7) Behi, A. T., Mouelhi, N. B. D., & Chaouali, W. (2023). Does prior trust work as a buffer? Examining the impact of perceived betrayal on customer responses to a double deviation. https://doi.org/10.1108/EMJB-01-2023-0032
8) Binzer, B., Kendziorra, J., Witte, A. K., & Winkler, T. J. (2024). Trust in Public and Private Providers of Health Apps and Usage Intentions: A Sectoral Privacy Calculus and Control Perspective. Business and Information Systems Engineering, 66(3), 273–297. https://doi.org/10.1007/s12599-024-00869-4
9) Chai, L., & Wang, Y. (2022). Exploring the Sustainable Usage Intention of BOPS: A Perspective of Channel Integration Quality. Sustainability (Switzerland), 14(21). https://doi.org/10.3390/su142114114
10) Chee, S. Y. (2023). Age-related digital disparities, functional limitations, and social isolation: unraveling the grey digital divide between baby boomers and the silent generation in senior living facilities. Aging & Mental Health, 28(4), 621–632. https://doi.org/10.1080/13607863.2023.2233454
11) Chen, Y. H., & Barnes, S. (2007). Initial trust and online buyer behaviour. Industrial Management and Data Systems, 107(1), 21–36. https://doi.org/10.1108/02635570710719034
12) Connolly, R., Sanchez, O. P., Compeau, D., & Tacco, F. (2023). Understanding Engagement in Online Health Communities: A Trust-Based Perspective. Journal of the Association for Information Systems, 24(2), 345–378. https://doi.org/10.17705/1jais.00785
13) Cresswell, J. W. (2009). Qualitative, Quantitative, and Mixed-Methods Research. Microbe Magazine, 4(11), 485–485. https://doi.org/10.1128/microbe.4.485.1
14) D’agostino, R. B., & Russell, H. K. (2005). Factor Loading Matrix. Encyclopedia of Biostatistics. https://doi.org/10.1002/0470011815.b2a13026
15) Davis. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. Management Information Systems Research Center, 13, 319–340. http://www.jstor.org/stable/249008
16) Deloitte. (2022). Digitising Indonesia’s Health Care Sector.
17) Dinakrisma, A. A., Laksmi, P. W., Abdiel, T., Fernandez, J. P., Indahwati, N., Susanto, A. P., Indrajaya Lukmana, A. A., & Yusuf, P. A. (2022). The role of digital mobile technology in elderly health management among health care workers in Indonesia: Analysis of knowledge, attitudes, and practice. Digital Health, 8. https://doi.org/10.1177/20552076221102771
18) Escobar-Rodriguez, T., & Monge-Lozano, P. (2012). The acceptance of Moodle technology by business administration students. Computers and Education, 58(4), 1085–1093. https://doi.org/10.1016/j.compedu.2011.11.012
19) Filieri, R., Acikgoz, F., Ndou, V., & Dwivedi, Y. (2021). Is TripAdvisor still relevant? The influence of review credibility, review usefulness, and ease of use on consumers’ continuance intention. International Journal of Contemporary Hospitality Management, 33(1), 199–223. https://doi.org/10.1108/IJCHM-05-2020-0402
20) Flavián, C., Guinalíu, M., & Gurrea, R. (2006). The role played by perceived usability, satisfaction and consumer trust on website loyalty. Information and Management, 43(1), 1–14. https://doi.org/10.1016/j.im.2005.01.002
21) Gefen, D., & Straub, D. (2000). The Relative Importance of Perceived Ease of Use in IS Adoption: A Study of E-Commerce Adoption. Journal of the Association for Information Systems, 1(1), 1–30. https://doi.org/10.17705/1jais.00008
22) Gur, A. (2020). Customer trust and perceived service quality in the healthcare sector: Customer aggressive behaviour as a mediator. Journal of Trust Research, 10(2), 113–133. https://doi.org/10.1080/21515581.2021.1927063
23) Hair, J. F., Howard, M. C., & Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research, 109(November 2019), 101–110. https://doi.org/10.1016/j.jbusres.2019.11.069
24) Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Evaluation of Formative Measurement Models. https://doi.org/10.1007/978-3-030-80519-7_5
25) Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). The Results of PLS-SEM Article information. European Business Review, 31(1), 2–24.
26) Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science,43(1),115–135. https://doi.org/10.1007/s11747-014-0403-8
27) Holden, R. J., Brown, R. L., Scanlon, M. C., & Karsh, B. T. (2012). Modeling nurses’ acceptance of bar coded medication administration technology at a pediatric hospital. Journal of the American Medical Informatics Association, 19(6), 1050–1058. https://doi.org/10.1136/amiajnl-2011-000754
28) Hua, C., Cole, S., & Xu, N. (2021). Rethinking trust in tourism apps: the moderating effect of age. Journal of Hospitality and Tourism Technology, 12(3), 548–562. https://doi.org/10.1108/JHTT-01-2020-0013
29) Kaewkitipong, L., Chen, C., Han, J., & Ractham, P. (2022). Human–Computer Interaction (HCI) and Trust Factors for the Continuance Intention of Mobile Payment Services. Sustainability (Switzerland), 14(21), 1–15. https://doi.org/10.3390/su142114546
30) Kao, M.-Y., & Gusfield, D. (1993). EFFICIENT DETECTIONAND PROTECTION OFINFORMATION IN CROSS TABULATED. Journal on Discrete Mathematics, 6(3), 460–476.
31) King, R. C., Schilhavy, R. A. M., Chowa, C., & Chin, W. W. (2016). Do customers identify with our website? The effects of website identification on repeat purchase intention. International Journal of Electronic Commerce, 20(3), 319–354. https://doi.org/10.1080/10864415.2016.1121762
32) Lecheler, S., de Haan, Y., & Kruikemeier, S. (2020). Introduction to the Special Issue: Meeting the Digital Demand through a Multi-Perspective Methodological Approach. Journalism Studies, 21(7), 857–862. https://doi.org/10.1080/1461670x.2020.1752290
33) Lee, S. Y., & Kim, J. H. (2014). Effects of servicescape on perceived service quality, satisfaction and behavioral outcomes in public service facilities. Journal of Asian Architecture and Building Engineering, 13(1), 125–131. https://doi.org/10.3130/jaabe.13.125
34) Leventhal, R. C. (1997). Leventhal - 1997 - Aging consumers and their effects on the marketplace. 14(4), 276–281.
35) Liu, J. Y. W., Sorwar, G., Rahman, M. S., & Hoque, M. R. (2023). The role of trust and habit in the adoption of mHealth by older adults in Hong Kong: a healthcare technology service acceptance (HTSA) model. BMC Geriatrics, 23(1), 1–17. https://doi.org/10.1186/s12877-023-03779-4
36) Liu, M., Xu, J., Li, S., & Wei, M. (2023). Engaging customers with online restaurant community through mutual disclosure amid the COVID-19 pandemic: The roles of customer trust and swift guanxi. Journal of Hospitality and Tourism Management, 56(March), 124–134. https://doi.org/10.1016/j.jhtm.2023.06.019
37) Mahboob, F., Talpur, A. B., & Khaskhely, M. K. (2022). Investigating Factors Towards Adoption of Mobile Wallet Payment Services. Global Economics Review, VII(IV), 1–7. https://doi.org/10.31703/ger.2022(vii-iv).01
38) Martínez-Navalón, J. G., Fernández-Fernández, M., & Alberto, F. P. (2023). Does privacy and ease of use influence user trust in digital banking applications in Spain and Portugal? International Entrepreneurship and Management Journal, 19(2), 781–
39) 803. https://doi.org/10.1007/s11365-023-00839-4
40) Mou, J., Shin, D. H., & Cohen, J. (2017). Understanding trust and perceived usefulness in the consumer acceptance of an e-service: a longitudinal investigation. Behaviour and Information Technology, 36(2), 125–139. https://doi.org/10.1080/0144929X.2016.1203024
41) Oriade, A., & Schofield, P. (2019). An examination of the role of service quality and perceived value in visitor attraction experience. Journal of Destination Marketing and Management, 11, 1–9. https://doi.org/10.1016/j.jdmm.2018.10.002
42) Petreson, R. A. (1994). A Meta-analysis of Cronbach’s Coefficient Alpha. Journal of Consumer Research, 21(9), 381–391.
43) Rahman, M. S., Hossain, M. A., Zaman, M. H., & Mannan, M. (2020). E-service quality and trust on customer’s patronage intention: Moderation effect of adoption of advanced technologies. Journal of Global Information Management, 28(1), 39–55. https://doi.org/10.4018/JGIM.2020010103
44) Rajaobelina, L., Brun, I., Line, R., & Cloutier-Bilodeau, C. (2021). Not all elderly are the same: fostering trust through mobile banking service experience. International Journal of Bank Marketing, 39(1), 85–106. https://doi.org/10.1108/IJBM-05-2020-0288
45) Ramayah, T., Dastane, O., Domaradzki, J., Khalilur Rahman, M., Abu Issa Gazi, M., & Mai, G. (2022). Determinants of patients’ satisfaction and trust toward healthcare service environment in general practice clinics. Frontiers in Psychology.
46) Roszkowski, M. J., & Soven, M. (2010). Shifting gears: Consequences of including two negatively worded items in the middle of a positively worded questionnaire. Assessment and Evaluation in Higher Education, 35(1), 113–130. https://doi.org/10.1080/02602930802618344
47) Ruotsalainen, P., & Blobel, B. (2022). Transformed Health Ecosystems—Challenges for Security, Privacy, and Trust. Frontiers in Medicine, 9(March), 1–10. https://doi.org/10.3389/fmed.2022.827253
48) Saadatzi, M. N., Cynthia Logsdon, M., Abubakar, S., Das, S., Jankoski, P., Mitchell, H., Chlebowy, D., & Popa, D. O. (2020). Acceptability of using a robotic nursing assistant in health care environments: experimental pilot study. Journal of Medical Internet Research, 22(11), 1–7. https://doi.org/10.2196/17509
49) Sarkar, S., Chauhan, S., & Khare, A. (2020). A meta-analysis of antecedents and consequences of trust in mobile commerce. International Journal of Information Management, 50(March 2019), 286–301. https://doi.org/10.1016/j.ijinfomgt.2019.08.008
50) Smrke, U., Špes, T., Mlakar, I., Musil, B., & Plohl, N. (2024). Technophobia Mediates the Associations Between Age, Education Level, and Readiness to Adopt New (Health) Technology Among Aging Adults. Journal of Applied Gerontology, 0(0), 1–11. https://doi.org/10.1177/07334648241274260
51) Spencer, B. F., Sain, M. K., Won, C. H., Kaspari, D. C., & Sain, P. M. (1994). Reliability-based measures of structural control robustness. Structural Safety, 15(1–2), 111–129. https://doi.org/10.1016/0167-4730(94)90055-8
52) Stafford, E., Brister, T., Duckworth, K., Rauseo-Ricupero, N., & Lagan, S. (2021). Needs and experiences of users of digital navigation tools for mental health treatment and supportive services: Survey study. JMIR Mental Health, 8(6), 1–8. https://doi.org/10.2196/27022
53) United Nation. (2023). World Population Ageing 2023. United Nations Publication. https://doi.org/9789213586747
54) van Doorn, J., Mende, M., Noble, S. M., Hulland, J., Ostrom, A. L., Grewal, D., & Petersen, J. A. (2017). Domo Arigato Mr. Roboto: Emergence of Automated Social Presence in Organizational Frontlines and Customers’ Service Experiences. Journal of Service Research, 20(1), 43–58. https://doi.org/10.1177/1094670516679272
55) Van Velsen, L., Wildevuur, S., Flierman, I., Van Schooten, B., Tabak, M., & Hermens, H. (2016). Trust in telemedicine portals for rehabilitation care: An exploratory focus group study with patients and healthcare professionals eHealth/ telehealth/ mobile health systems. BMC Medical Informatics and Decision Making,16(1),1–12. https://doi.org/10.1186/s12911-016-0250-2
56) Wells, J. C., Keyl, P. M., Chase, G. A., Aboraya, A., Folstein, M. F., & Anthony, J. C. (1992). Discriminant validity of a reduced set of Mini‐Mental State Examination items for dementia and Alzheimer’s disease. Acta Psychiatrica Scandinavica, 86(1), 23–31. https://doi.org/10.1111/j.1600-0447.1992.tb03220.x