Digital Banking Adoption and Financial Inclusion in Vietnam: A Multi-Dimensional Analysis of User Perceptions and Socioeconomic Factors
1Vu Hiep HOANG, 2Le Ha Thao PHAN
1National Economics University, Hanoi, Vietnam
2Hanoi International School, Hanoi, Vietnam
https://doi.org/10.47191/jefms/v7-i10-38
ABSTRACT:
This study investigates the factors influencing digital banking adoption intention and its impact on perceived financial inclusion. By integrating the Technology Acceptance Model with trust theories and digital literacy concepts, we develop a comprehensive framework to understand the complex relationships among these variables. The research employs a mixed-method approach, combining structural equation modeling (SEM) and fuzzy-set qualitative comparative analysis (fsQCA) to analyze survey data from 587 respondents. Results from SEM reveal that perceived usefulness, perceived ease of use, institutional trust, technological trust, and social influence significantly affect digital banking adoption intention, which in turn positively influences perceived financial inclusion. Digital literacy moderates the relationships between perceived ease of use and adoption intention, as well as between technological trust and adoption intention. The fsQCA results complement these findings by identifying multiple configurations leading to high adoption intention and perceived financial inclusion, highlighting the equifinal nature of these relationships. This study contributes to the literature by providing a nuanced understanding of digital banking adoption and its link to financial inclusion, offering valuable insights for policymakers and financial institutions. The findings underscore the importance of enhancing perceived usefulness, ease of use, trust, and digital literacy to promote digital banking adoption and, consequently, financial inclusion.
KEYWORDS:
Digital banking adoption, financial inclusion, technology acceptance model, trust, fuzzy-set qualitative comparative analysis
REFERENCES:
1) Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
2) Akhlaq, A., & Ahmed, E. (2013). The effect of motivation on trust in the acceptance of internet banking in a low income country. International Journal of Bank Marketing, 31(2), 115-125. https://doi.org/10.1108/02652321311298690
3) Al-Jabri, I. M., & Sohail, M. S. (2012). Mobile banking adoption: Application of diffusion of innovation theory. Journal of Electronic Commerce Research, 13(4), 379-391.
4) Allen, F., Demirgüç-Kunt, A., Klapper, L., & Peria, M. S. M. (2016). The foundations of financial inclusion: Understanding ownership and use of formal accounts. Journal of Financial Intermediation, 27, 1-30. a. https://doi.org/10.1016/j.jfi.2015.12.003
5) Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423. https://doi.org/10.1037/0033-2909.103.3.411
6) Atkinson, A., & Messy, F. A. (2013). Promoting financial inclusion through financial education: OECD/INFE evidence, policies and practice. OECD Working Papers on Finance, Insurance and Private Pensions, No. 34. OECD Publishing. https://doi.org/10.1787/5k3xz6m88smp-en
7) Bagozzi, R. P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the Association for Information Systems, 8(4), 244-254. https://doi.org/10.17705/1jais.00122
8) Beck, T., Demirgüç-Kunt, A., & Levine, R. (2007). Finance, inequality and the poor. Journal of Economic Growth, 12(1), 27-49. https://doi.org/10.1007/s10887-007-9010-6
9) Beck, T., Demirgüç-Kunt, A., & Martinez Peria, M. S. (2007). Reaching out: Access to and use of banking services across countries. Journal of Financial Economics, 85(1), 234-266. https://doi.org/10.1016/j.jfineco.2006.07.002
10) Brislin, R. W. (1970). Back-translation for cross-cultural research. Journal of Cross-Cultural Psychology, 1(3), 185-216. https://doi.org/10.1177/135910457000100301
11) Cámara, N., & Tuesta, D. (2014). Measuring financial inclusion: A multidimensional index. BBVA Research Working Paper, No. 14/26. https://doi.org/10.2139/ssrn.2634616
12) Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295-336). Lawrence Erlbaum Associates.
13) Chong, A. Y. L. (2013). A two-staged SEM-neural network approach for understanding and predicting the determinants of m-commerce adoption. Expert Systems with Applications, 40(4), 1240-1247. https://doi.org/10.1016/j.eswa.2012.08.067
14) Chong, A. Y. L., Chan, F. T., & Ooi, K. B. (2012). Predicting consumer decisions to adopt mobile commerce: Cross country empirical examination between China and Malaysia. Decision Support Systems, 53(1), 34-43. a. https://doi.org/10.1016/j.dss.2011.12.001
15) Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
16) Crabbe, M., Standing, C., Standing, S., & Karjaluoto, H. (2009). An adoption model for mobile banking in Ghana. International Journal of Mobile Communications, 7(5), 515-543. https://doi.org/10.1504/IJMC.2009.024391
17) Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
18) Demirgüç-Kunt, A., & Klapper, L. (2012). Measuring financial inclusion: The Global Findex Database. World Bank Policy Research Working Paper, No. 6025. https://doi.org/10.1596/1813-9450-6025
19) Demirgüç-Kunt, A., & Klapper, L. (2013). Measuring financial inclusion: Explaining variation in use of financial services across and within countries. Brookings Papers on Economic Activity, 2013(1), 279-340. a. https://doi.org/10.1353/eca.2013.0002
20) Demirgüç-Kunt, A., Beck, T., & Honohan, P. (2008). Finance for all? Policies and pitfalls in expanding access. World Bank. https://doi.org/10.1596/978-0-8213-7291-3
21) Demirgüç-Kunt, A., Klapper, L., Singer, D., & Van Oudheusden, P. (2015). The Global Findex Database 2014: Measuring financial inclusion around the world. World Bank Policy Research Working Paper, No. 7255. https://doi.org/10.1596/1813-9450-7255
22) Demirgüç-Kunt, A., Klapper, L., Singer, D., Ansar, S., & Hess, J. (2018). The Global Findex Database 2017: Measuring financial inclusion and the fintech revolution. World Bank Publications.
23) Donner, J., & Tellez, C. A. (2008). Mobile banking and economic development: Linking adoption, impact, and use. Asian Journal of Communication, 18(4), 318-332. https://doi.org/10.1080/01292980802344190
24) Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
25) Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51-90. https://doi.org/10.2307/30036519
26) Gu, J. C., Lee, S. C., & Suh, Y. H. (2009). Determinants of behavioral intention to mobile banking. Expert Systems with Applications, 36(9), 11605-11616. https://doi.org/10.1016/j.eswa.2009.03.024
27) Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Prentice Hall.
28) Hanafizadeh, P., Keating, B. W., & Khedmatgozar, H. R. (2014). A systematic review of Internet banking adoption. Telematics and Informatics, 31(3), 492-510. https://doi.org/10.1016/j.tele.2013.04.003
29) Hargittai, E. (2001). Second-level digital divide: Differences in people's online skills. First Monday, 7(4). a. https://doi.org/10.5210/fm.v7i4.942
30) Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. a. https://doi.org/10.1007/s11747-014-0403-8
31) Hoehle, H., Scornavacca, E., & Huff, S. (2012). Three decades of research on consumer adoption and utilization of electronic banking channels: A literature analysis. Decision Support Systems, 54(1), 122-132. a. https://doi.org/10.1016/j.dss.2012.04.010
32) Hofstede, G. (2001). Culture's consequences: Comparing values, behaviors, institutions, and organizations across nations (2nd ed.). Sage Publications.
33) Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. a. https://doi.org/10.1080/10705519909540118
34) Jack, W., & Suri, T. (2011). Mobile money: The economics of M-PESA. NBER Working Paper, No. 16721. National Bureau of Economic Research. https://doi.org/10.3386/w16721
35) Kapoor, K. K., Dwivedi, Y. K., & Williams, M. D. (2014). Rogers' innovation adoption attributes: A systematic review and synthesis of existing research. Information Systems Management, 31(1), 74-91. a. https://doi.org/10.1080/10580530.2014.854103
36) Kapoor, K. K., Dwivedi, Y. K., & Williams, M. D. (2015). Examining the role of three sets of innovation attributes for determining adoption of the interbank mobile payment service. Information Systems Frontiers, 17(5), 1039-1056. https://doi.org/10.1007/s10796-014-9484-7
37) Karjaluoto, H., Mattila, M., & Pento, T. (2002). Factors underlying attitude formation towards online banking in Finland. International Journal of Bank Marketing, 20(6), 261-272. https://doi.org/10.1108/02652320210446724
38) Karlan, D., McConnell, M., Mullainathan, S., & Zinman, J. (2016). Getting to the top of mind: How reminders increase saving. Management Science, 62(12), 3393-3411. https://doi.org/10.1287/mnsc.2015.2296
39) Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
40) Laforet, S., & Li, X. (2005). Consumers' attitudes towards online and mobile banking in China. International Journal of Bank Marketing, 23(5), 362-380. https://doi.org/10.1108/02652320510629250
41) Lee, J. M., Cho, Y., & Choi, Y. J. (2019). A study on the determinants of digital banking adoption: An empirical study on South Korean mobile banking. International Journal of Industrial Distribution & Business, 10(12), 45-54.
42) Lee, M. C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141. a. https://doi.org/10.1016/j.elerap.2008.11.006
43) Lu, J., Yao, J. E., & Yu, C. S. (2005). Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. The Journal of Strategic Information Systems, 14(3), 245-268. a. https://doi.org/10.1016/j.jsis.2005.07.003
44) Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision Support Systems, 49(2), 222-234. https://doi.org/10.1016/j.dss.2010.02.008
45) Lyytinen, K., & Damsgaard, J. (2001). What's wrong with the diffusion of innovation theory? In M. A. Ardis & B. L. Marcolin (Eds.), Diffusing Software Product and Process Innovations (pp. 173-190). Springer. https://doi.org/10.1007/978-0-387-35404-0_11
46) Martins, C., Oliveira, T., & Popovič, A. (2014). Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International Journal of Information Management, 34(1), 1-13. https://doi.org/10.1016/j.ijinfomgt.2013.06.002
47) Mas, I., & Kumar, K. (2008). Banking on mobiles: Why, how, for whom? CGAP Focus Note, No. 48. Consultative Group to Assist the Poor.
48) Ng, W. (2012). Can we teach digital natives digital literacy? Computers & Education, 59(3), 1065-1078. https://doi.org/10.1016/j.compedu.2012.04.016
49) Nguyen, T. T., Nguyen, T. T. H., & Nguyen, T. N. (2020). The determinants of mobile banking adoption in Vietnam. International Journal of Data and Network Science, 4(1), 1-14.
50) Ozili, P. K. (2018). Impact of digital finance on financial inclusion and stability. Borsa Istanbul Review, 18(4), 329-340. https://doi.org/10.1016/j.bir.2017.12.003
51) Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: An extension of the technology acceptance model. Internet Research, 14(3), 224-235. https://doi.org/10.1108/10662240410542652
52) Ragin, C. C. (2008). Redesigning social inquiry: Fuzzy sets and beyond. University of Chicago Press.
53) Rogers, E. M. (2003). Diffusion of Innovations (5th ed.). Free Press.
54) Sarma, M. (2008). Index of financial inclusion. Indian Council for Research on International Economic Relations Working Paper, No. 215.
55) Sarma, M., & Pais, J. (2011). Financial inclusion and development. Journal of International Development, 23(5), 613-628. https://doi.org/10.1002/jid.1698
56) Shaikh, A. A., & Karjaluoto, H. (2015). Mobile banking adoption: A literature review. Telematics and Informatics, 32(1), 129-142. https://doi.org/10.1016/j.tele.2014.05.003
57) Srite, M., & Karahanna, E. (2006). The role of espoused national cultural values in technology acceptance. MIS Quarterly, 30(3), 679-704. https://doi.org/10.2307/25148745
58) Tan, M., & Teo, T. S. (2000). Factors influencing the adoption of Internet banking. Journal of the Association for Information Systems, 1(1), 5. https://doi.org/10.17705/1jais.00005
59) Tran, H. T. T., & Corner, J. (2016). The impact of communication channels on mobile banking adoption. International Journal of Bank Marketing, 34(1), 78-109. https://doi.org/10.1108/IJBM-06-2014-0073
60) van Dijk, J. A. (2006). Digital divide research, achievements and shortcomings. Poetics, 34(4-5), 221-235. a. https://doi.org/10.1016/j.poetic.2006.05.004
61) Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
62) Venkatesh, V., & Zhang, X. (2010). Unified theory of acceptance and use of technology: U.S. vs. China. Journal of Global Information Technology Management, 13(1), 5-27. https://doi.org/10.1080/1097198X.2010.10856507
63) Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
64) Wang, Y. S., Wang, Y. M., Lin, H. H., & Tang, T. I. (2003). Determinants of user acceptance of internet banking: An empirical study. International Journal of Service Industry Management, 14(5), 501-519. a. https://doi.org/10.1108/09564230310500192
65) Yousafzai, S. Y., Pallister, J. G., & Foxall, G. R. (2009). Multi-dimensional role of trust in Internet banking adoption. The Service Industries Journal, 29(5), 591-605. https://doi.org/10.1080/02642060902719958
66) Yu, C. S. (2012). Factors affecting individuals to adopt mobile banking: Empirical evidence from the UTAUT model. Journal of Electronic Commerce Research, 13(2), 104-121.
67) Zins, A., & Weill, L. (2016). The determinants of financial inclusion in Africa. Review of Development Finance, 6(1), 46-57. https://doi.org/10.1016/j.rdf.2016.05.001