Proportional Reinsurance is based on Maximizing the Lundberg Exponent
1Duc Trong Pham, 2Thi Thanh Hang Doan
1University of Labour and Social Affairs, Hanoi, Vietnam
2University of University of Transport Technology, Hanoi, Vietnam
https://doi.org/10.47191/jefms/v6-i11-21
ABSTRACT:
Optimizing risk in the insurance market, particularly in reinsurance, is a major concern due to potential risks in a rapidly developing industry. Providing evaluation criteria for reinsurance models is crucial for insurance companies to enhance business performance. Risk management in reinsurance is of great significance in the insurance business and has been extensively researched. Many different reinsurance models can be used such as the mean criterion, the expectation-variance criterion, the bankruptcy probability function criterion, and the Lundberg exponent optimization criterion. This paper focuses on studying risk optimization in proportional reinsurance by maximizing the Lundberg exponent of the Cramer-Lundberg risk model to minimize the probability of bankruptcy 𝜓(𝑥). At the same time, we provide the algorithm to determine the Lundberg exponent based on the scaling factor, and risk optimization is evaluated accordingly.
KEYWORDS:
Optimizing risk, probability of bankruptcy, proportional reinsurance, reinsurance, Lundberg exponent.
REFERENCES:
1) Belkina, T., Hipp, C., Luo, S. & Taksar, M. 2014. Optimal constrained investment in the Cramer-Lundberg model. Scandinavian Actuarial Journal. 2014 - Issue 5. Pages 383-404. https://doi.org/10.1080/03461238.2012.699001.
2) Buhlman, H. 2007. Mathematical Models in Risk Theory, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 72, Springer Verlag: Berlin, Heidelberg, New York, Second Printed.
3) Cani, A. & Thonhauser, S. 2016. An optimal reinsurance problem in the Cramér–Lundberg model. Math Meth Oper Res (2017) 85:179–205. DOI 10.1007/s00186-016-0559-8.
4) Centeno, L. 1997. Excess of Loss Reinsurance and the Probability of Ruin in Finite Horizon. ASTIN Bulletin. V. 27, No. 1.
5) Gerber, H.U. 1997. An Introduction to Mathematical Risk Theory. H.U. Gerber Hubner foundation monograph series. No. 8.
6) Hald, M. & Schmidli, H. 2004. On the maximisation of the adjustment coefficient under proportional reinsurance. Published online by Cambridge University Press. https://doi.org/10.2143/AST.34.1.504955.
7) Lucas, K., Renn, O. & Jaeger, C. 2018, Systemic Risks: Theory and Mathematical Modeling. Advanced Theory and Simulation. Volume1, Issue11. November 2018. https://doi.org/10.1002/adts.201800051.
8) Meng, H., Wei, L. & Zhou, M. 2023. Multiple per-claim reinsurance based on maximizing the Lundberg exponent. Insurance: Mathematics and Economics. Volume 112, September 2023, Pages 33-47. https://doi.org/10.1016/j.insmatheco.2023.05.009.
9) Schmidli, H. 2002a. On minimising the ruin probability by investment and reinsurance. Ann. 12 (3) 890-907, August 2002. https://doi.org/10.1214/aoap/1031863173.
10) Pacáková, V. 2010. Pareto Distribution in Non-proportional reinsurance. Prace Naukowe Universytetu Ekonomicznego We Wroclawiu. Inwestycje finansowe i ubezpieczenia –tendencje światowe a polski rynek.
11) Willmot, G. E., Cai, J. & Lin, S. 2016. Lundberg inequalities for renewal equations. Published online by Cambridge University Press: 01 July 2016.
12) Шон, Л. Д. 2005. Оптимальный уровень удержания при пропорциональном перестраховании, минимизирующий верхнюю границу вероятности разорения [Текст] /Ле Динь Шон //Тр. IV Всерос. ФАМ’2005 конф. по финансовой и актуарной математике и смежным вопросам. Часть 2. – Красноярск: ИВМ СО РАН, КрасГУ, КГТЭИ, изд-во "Гротеск", С. 92-97.