The Use of Fuzzy Logic to Measure Multidimensional Poverty in Cameroon
Gabriel Rodrigue BILOA
Economist, Faculty of Economics and Applied Management (FSEGA), Department of Quantitative Techniques, University of Douala, Cameroon.
https://doi.org/10.47191/jefms/v5-i8-01ABSTRACT:
The protean nature of poverty does not make it easy to understand, as it is a concept that can be seen from several angles (sociological, anthropological and economic). However, the aim of this paper is to provide a measure of multidimensional poverty in Cameroon. In other words, to make a multidimensional analysis of poverty. To achieve this, the fuzzy logic approach of Lotfi Zadeh (1965) would be ideal, as it appears to be the appropriate tool for specifying such vague concepts as poverty.
Using the third Cameroonian household survey (ECAM3), we were able to identify the different poverty groups. This enabled us to construct a multidimensional poverty index in three stages. First, the non-monetary dimensions were selected, then the deprivation indicators were extracted and finally the results were aggregated.
Because of the calculations, the fuzzy poverty index in Cameroon is 0.6010. This indicates that 60.10% of Cameroonian households are structurally poor. Disaggregating this index by region, stratum and gender of the head of household, shows that the Far North region has the highest fuzzy proportion (P=0.7367), while the two major metropolises of Yaoundé and Douala have better scores. For the most part, rural areas are the poorest with a fuzzy proportion of (0.7463), while female-headed households are the most indigent (P=0.6264).
Analysis of the deprivation indicators shows, however, that the supply of drinking water (0.7657), the mode of disposal of wastewater (0.9501), the level of education of heads of households (0.7430) and household income (0.9051) are those that accentuate the poverty of Cameroonian households. Of the ten regions of Cameroon, the Far North (0.1585), the North West (0.1452) and the West (0.1161) are those that contribute most to poverty.
KEYWORDS:
Fuzzy subsets/Fuzzy logic, Membership functions, Fuzzy measures of poverty, Poverty decomposition, Deprivation indicators, Totally fuzzy and relative approach.
REFERENCES:
1) ALEXANDRE BERTIN, 2007, Pauvreté monétaire, pauvreté non monétaire : une analyse des interactions appliquée à la Guinée. Economies and finances. Université Montesquieu - Bordeaux IV, 473 p.
2) ALΚIRE, Sabina, Oct. 2010, Measuring multidimensional poverty: the limits, University of Oxford, p. 23-26
3) AMARTYA Kunar Sen, 1976, Poverty: An Ordinal Approach to Measurement, Econometrica, vol. 44, no. 2, pp. 219-231.
4) AMARTYA Kunar Sen, 1982, Choice, Welfare and Measurement, Oxford: Basil Blackwell, 480 pp.
5) AMARTYA Kunar Sen, 1985, Commodities and Capabilities, Amsterdam: North-Holland, 142 p.
6) AMARTYA Kunar Sen, 1993a, Capability and Well-being in Nussbaum Martha and Sen Amartya, (eds), (1993), The Quality of Life, Oxford, Clarendon Press, pp. 30-53.
7) AMBAPOUR Samuel, DT 13/2006, Pauvreté Multidimensionnelle au Congo: une approche non monétaire, p. 18.
8) AMBAPOUR Samuel, DT 16/2009, Fuzzy set theory: application to poverty measurement in Congo, p. 9-21
9) ASSELIN Louis-Marie, DAUPHIN Anyck, 2000, Mesure de la pauvreté : un cadre conceptuel, Centre Canadien d'Etude et de Coopération Internationale, p. 20-29.
10) BALIAMOUNE-Lutz, M.N. 2004, On the measurement of human well-being: fuzzy set theory and Sen's capability approach, Wider Research paper n°2004/16, 35 p.
11) BALLET, Jérôme, DUBOIS, Jean-Luc, MAHIEU, François-Régis, 2003, Le développement socialement durable : un moyen d'intégrer capacités et durabilité, 3rd Conference on the Capability Approach, Università di Pavia, 6-9 September 2003, 19 p.
12) WORLD BANK, 2004c, World Economic Development Report, Services for the Poor. Washington: ESΚA Publishing, 310 pp.
13) WORLD BANK, 2005, Introduction to Poverty Analysis. Washington: World Bank Institute, 218 pp.
14) World Bank, 2005b, World Development Report. Washington: ESΚA Publishing, 232 pp.
15) BILOA, Gabriel Rodrigue, 2008, Dynamique de l'analyse de la pauvreté monétaire au Cameroun de 1996 à 2001, p. 86, DEA thesis, University of Yaoundé 2 - SOA
16) BILOA, Gabriel Rodrigue, 2019, Mesure du bien-être non monétaire et de la pauvreté multidimensionnelle au Cameroun : une approche par la logique floue, PhD thesis, University of Yaoundé 2 - SOA.
17) BOURGUIGNON, François, 2002, Multi-dimensional poverty orderings, DELTA Working Papers n°22, DELTA, 29 p.
18) CERIOLI, Adrea, ZIANI, S. , 1990, A Fuzzy Approach to the Measurement of Poverty, in Dagum, C. and Zenga, M. (ed.), Income and Wealth Distribution, Inequality and Poverty, Berlin: Springer Verlag, pp. 272-284.
19) CHELI, B., LEMMI, A., 1995, A Totally Fuzzy and Relative Approach to the Multidimensional Analysis of Poverty, Economic Notes Monte dei Paschi di Siena, vol. 24, n°1, p. 115-134.
20) CHIAPPERO MARTINETTI, Enrica, 2005, Capability Approach and Fuzzy Set Theory: Description, Aggregation and Inference Issues, in Lemmi Achille, Betti Gianni, 2006, Fuzzy set approach to multidimensional poverty measurement. London: Springer, p. 93-113
21) CLAUDE PONSARD, Jan.-Feb. 1975, L'imprécision et son traitement en analyse économique, Revue d'économie politique, vol. 85, p. 17-34
22) DAGUM, Camilo, 2002, Analysis and Measurement of Poverty and Social Exclusion Using Fuzzy Set Theory: Application and Policy Implications. University of Bologna. Mimeo, 42 p.
23) DUBOIS Jean-Luc, MAHIEU François-Régis, POUSSARD H. 2001, La durabilité sociale comme composante du développement humain durable, Cahiers du GRATICE n°20, Université de Paris XII Val de Marne, p. 95-113.
24) FAMBON, Samuel, 2007, Poverty and growth in Cameroon during the 1996 - 2001 period. Singapore Economic Review Conference in Conjunction with Brooks World poverty institute (August, 2007), 35 p.
25) FOSTER James, GREER Joel, THORBECKE Erik, 1984, A Class of Decomposable Poverty Measures, Econometrica, vol. 52, n°3 (May 1984), p. 761-766.
26) GASPER DES, 1997, Sen's Capabilities Approach and Nussbaum's Capabilities Ethic, Journal of International Development, vol.9, n°2, p. 281-302.
27) INSTITUT NATIONAL de la STATISTIQUE (INS) du Cameroun, 2008, ECAM3 Main Report, p. 23-33
28) KAUFMAN, A., 1973, Introduction to the theory of fuzzy subsets, vol 1, Masson.
29) KANBUR, R., SQUIRE, L. 1999, The evolution of thinking about poverty: Exploring the interactions mimeographed Document. Washington DC: World Development Report office, Washington DC World Bank.
30) Mireille RAZAFINDRAΚOTO, Javier HERRERA, François ROUBEAUD, 2006, Les déterminants du bien-être subjectif : à une approche comparative entre Madagascar et Pérou. Paris: Working Paper No. 1, DIAL p. 5-7
31) NUSSBAUM, Martha C. 1995, Emotions and Women's Capabilities, in Nussbaum Martha C., Glover Jonathan (ed.), Women, Culture, and Development: A Study of Human Capabilities, Oxford: Clarendon Press, pp. 360-395.
32) NUSSBAUM, Martha C. 2000, Women and Human Development. The Capabilities Approach, Cambridge: Cambridge University Press, 334 pp.
33) QIZILBASH, Mozaffar, 1996, Capabilities, Well-Being and Human Development: A Survey. Journal of Development Studies, vol. 33, no. 2, pp. 143-162.
34) RAVALLION, Martin, 1992, Poverty Comparisons, Living Standard Measurement Study Working Paper No. 88. The World Bank, 53 pp.
35) RAWLS, John, 1971, A Theory of Justice, The Belknap Press of Harvard University Press, 560 p.
36) THORBECΚE, Erik, 2005, Multidimensional Poverty: Conceptual and Measurement Issues, International conference, The Many Dimensions of Poverty, UNDP, 29-31 August, Brasilia, 30 p.
37) ZADEH, L.A. 1965, Fuzzy Sets, Information and Control, vol.8, p. 338-353.
38) ZADEH, L.A. 1971, Similarity Relations and Fuzzy Orderings, Information Sciences, Vol. 3, pp. 177-200.