Economic Sustainability of Thermal Waste Management in Electric Vehicle Batteries
1David Febraldo, 2Suyud Warno Utomo,3Wayan Nata Septiadi
1,2School of Environmental Science, Universitas Indonesia, Jakarta, 10430, Indonesia
3Department of Mechanical Engineering Udayana University, Bali, 80361, Indonesia
https://doi.org/10.47191/jefms/v5-i5-17ABSTRACT:
The performance and life of a li-ion battery is affected by the working temperature of the battery, the heat generated when the battery is operating can cause problems with the battery, such as reducing its life and in the worst case an explosion will occur. This study aims to determine the economic feasibility of applying heat pipes to the disposal of thermal waste batteries for electric vehicles). Economic analysis is studied in terms of optimizing battery costs with a heat pipe cooling system against batteries without a cooling system. The process of calculating the economic value carried out includes calculating the BCR (Benefit Cost Ratio) value and NPV (Net Present Value) value. The BCR value obtained shows the number 1.28. The NPV value shows a figure of IDR 2,050,740 which exceeds the number 0. The use of heat pipes can be an alternative for managing battery thermal waste. The BCR value minimizes the level of risk from investing in a project or unit. The NPV value also shows that the project can be accepted economically and the next process can be carried out.
KEYWORDS:
Sustainable development, BCR, NPV, Battery, Thermal Waste
REFERENCES:
1) Baral, N. R., Asher, Z. D., Trinko, D., Sproul, E., Quiroz-Arita, C., Quinn, J. C., & Bradley, T. H. Biomass feedstock transport using fuel cell and battery electric trucks improves lifecycle metrics of biofuel sustainability and economy. Journal of Cleaner Production, 2021; 279, 123593. https://doi.org/10.1016/j.jclepro.2020.123593
2) Chen, Meng, & Li, J. (2020). Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles. Journal of Energy Storage, 32(July), 101715. https://doi.org/10.1016/j.est.2020.101715
3) Feng, L., Zhou, S., Li, Y., Wang, Y., Zhao, Q., Luo, C., Wang, G., & Yan, K. (2018). Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling. Journal of Energy Storage, 16, 84–92. https://doi.org/10.1016/j.est.2018.01.001
4) Han, G., Liang, C. Z., Chung, T. S., Weber, M., Staudt, C., & Maletzko, C. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Research, 2016; 91, 361–370. https://doi.org/10.1016/j.watres.2016.01.031
5) Hussain, F., Rahman, M. Z., Sivasengaran, A. N., & Hasanuzzaman, M. Energy storage technologies. In Energy for Sustainable Development: Demand, Supply, Conversion and Management. Elsevier Inc. 2019. https://doi.org/10.1016/B978-0-12-814645-3.00006-7
6) Jiang, Z. Y., & Qu, Z. G. (2019). Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study. Applied Energy, 242(February), 378–392. https://doi.org/10.1016/j.apenergy.2019.03.043
7) Latruffe, L., Diazabakana, A., Bockstaller, C., Desjeux, Y., Finn, J., Kelly, E., ... & Uthes, S. (2016). Measurement of sustainability in agriculture: a review of indicators. Studies in Agricultural Economics, 118(3), 123-130.
8) Omahne, V., Knez, M., & Obrecht, M. Social aspects of electric vehicles research—trends and relations to sustainable development goals. World Electric Vehicle Journal, 2021; 12(1), 1–13. https://doi.org/10.3390/wevj12010015
9) Paletto, A., Bernardi, S., Pieratti, E., Teston, F., & Romagnoli, M. Assessment of environmental impact of biomass power plants to increase the social acceptance of renewable energy technologies. Heliyon, 2019; 5(7), e02070. https://doi.org/10.1016/j.heliyon.2019.e02070
10) Putra, N. W. S. (2014). Teknologi Pipa Kalor. UI-PRESS.
11) Rumiyanto, Irwan, H., & Purbasari, A. Analisa Studi Kelayakan Penambahan Mesin Cnc Baru Dengan Metode Npv (Net Present Value) Di PT. Usda Seroja Jaya Shipyard Batam. Profisiensi, 2015; 3(2), 151–159.
12) Satriady, A., Alamsyah, W., Saad, H. I., & Hidayat, S. PENGARUH LUAS ELEKTRODA TERHADAP KARAKTERISTIK BATERAI LiFePO 4. Jurnal Material Dan Energi Indonesia, 2016; 06(02), 43–48.
13) Sulianti, I., & Tilik, L. F. Analisis Kelayakan Finansial Internal Rate of Return (IRR) dan Benefit Cost Ratio (BCR) pada Alternatif Besaran Teknis Bangunan Pasar Cinde Palembang. Pilar, 2013; 8(1).
14) Tektronix. Lithium-Ion Battery Maintenance Guidelines. 2022.
15) Tran, T. H., Harmand, S., Desmet, B., & Filangi, S. (2014). Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery. Applied Thermal Engineering, 63(2), 551–558. https://doi.org/10.1016/j.applthermaleng.2013.11.048
16) Vidia, M. A. (2015). Proposed repeal of water saving regulations: cost benefit analysis. Paper
17) Wang, B., Xie, H. L., Ren, H. Y., Li, X., Chen, L., & Wu, B. C. Application of AHP, TOPSIS, and TFNs to plant selection for phytoremediation of petroleum-contaminated soils in shale gas and oil fields. Journal of Cleaner Production, 2019; 233, 13–22. https://doi.org/10.1016/j.jclepro.2019.05.301
18) Wang, Q., Jiang, B., Li, B., & Yan, Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renewable and Sustainable Energy Reviews, 2016; 64, 106–128. https://doi.org/10.1016/j.rser.2016.05.033
19) Yang, Y., Huang, G., Xu, S., He, Y., & Liu, X. Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy, 2016; 165, 390–396. https://doi.org/10.1016/j.hydromet.2015.09.025
20) Zhang, S., Zhao, R., Liu, J., & Gu, J. Investigation on a hydrogel based passive thermal management system for lithium ion batteries. Energy, 2014; 68, 854–861. https://doi.org/10.1016/j.energy.2014.03.012