Analysis of the Impact Regional Expenditures on Poverty in Indonesia
1Agus Tri BASUKI,2Ario Danu WICAKSANA
1,2Universitas Muhammadiyah Yogyakarta Indonesia
https://doi.org/10.47191/jefms/v5-i4-05ABSTRACT:
The purpose of this study was to determine the effect of government spending (Education, Health, Housing and Public Facilities, and Social Protection), GRDP, DAU, and population on the poverty of the provinces in Indonesia. The method in this study uses the Regression Vector Error Correction Model (VECM) panel model with 32 provinces. The data used is secondary data with a period of 2010-2020 sourced from the Central Statistics Agency (BPS), the Directorate General of Fiscal Balance (DJPK), and provincial sites from each region.
The results of the study indicate that in the short term poverty itself, education, and PFU have a significant influence on the poverty of the provinces in Indonesia. In the long term, the estimation results show that Education, PFU, DAU, and Population have a significant effect on Poverty. The advantage of the results from this VECM panel is that it can predict in the long term through the trend of these variables in the future Variance Decomposition (VD) and Impulse Response Function (IRF) shock effects.
KEYWORDS:
Regional Expenditure, Dynamic Panel, Balance Fund, Poverty, Variance Decomposition.
JEL : C53, E17, E62, H50
REFERENCES:
1) Ames, B., Brown, W., Devarajan, S., & Izquierdo, A. (2001). Macroeconomic policy and poverty reduction.
2) Anwar, A. (2018). Pendidikan , Kesehatan dan pertumbuhan ekonomi regional di Indonesia: Pendekatan model panel dinamis. 19(April). https://doi.org/10.18196/jesp.19.1.2727
3) Basuki, A. T. (2017). Analisis Data Panel Penelitian.
4) Basuki, A. T., & Prawoto, N. (2015). Analisis Regresi dalam Penelitian Ekonomi dan Bisnis. Depok: PT Rajagrafindo Persada, 1–239.
5) Basuki, A. T., & Yusuf, A. I. (2018). Pengaruh Variabel Ekonomi Makro Dan Indeks Harga Saham Dunia Terhadap Jakarta Islamic Index. Buletin Ekonomi, 16(1), 81-98.
6) Birowo, T. (2011). Relation Between Government Comparison of Budget Classifications Before and After Budget Management Reform in 2004 By Tejo Birowo GRADUATE SCHOOL OF ASIA PACIFIC STUDIES.
7) Elia, A., Tiawon, H., & Indrajaya, K. (2020). Government expenditure and poverty reduction in the proliferation of new administrative areas of Central Kalimantan , Indonesia. 3(2), 145–155.
8) Enders, W., & Siklos, P. L. (2001). Cointegration and threshold adjustment. Journal of Business & Economic Statistics, 19(2), 166-176.
9) Firman, I., & Aif, M. T. (2021). Jurnal Ekonomi dan Bisnis. Jurnal Ekonomi dan Bisnis, 24 (Poverty), 8–16.
10) Greene, W. H. (2003). Econometric analysis. Pearson Education India.
11) Gujarati. (2008). Mh09 Gujarati BasicEco5wm.
12) Imal, I. (2012). Dampak dana alokasi umum (dau) terhadap kemiskinan di kota tangerang. 1(1).
13) Kao, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of econometrics, 90(1), 1-44.
14) Lanne, M., & Nyberg, H. (2014). Generalized forecast error variance decomposition for linear and nonlinear multivariate models. School of Economics and Management.
15) Mahembe, E., & Odhiambo, N. M. (2020). Development aid and its impact on poverty reduction in developing countries A dynamic panel data approach. 19(2), 145–168. https://doi.org/10.1108/IJDI-08-2019-0144
16) Mehmood, R., & Sadiq, S. (2010). www.econstor.eu.
17) Neal, T. (2014). Panel cointegration analysis with xtpedroni. The Stata Journal, 14(3), 684-692.
18) Omodero, C. O. (2019). Government Sectoral Expenditure and Poverty Alleviation in Nigeria Government Sectoral Expenditure and Poverty Alleviation in Nigeria. June. https://doi.org/10.5430/rwe.v10n1p80
19) Sala, L. K. (2014). Is poverty an obstacle for economic growth ? A dynamic panel data approach. June 2014.
20) Sasana, H., & Kusuma, P. (2018). Government Expenditure and Poverty in Indonesia. 2018(2009), 142–153. https://doi.org/10.18502/kss.v3i10.3125
21) Suyanto, B. (1995). Perangkap Kemiskinan (Problem dan Pengentasannya). Universitas Airlangga Press.
22) Tang, W., Liu, S., Kang, P., Peng, X., Li, Y., Guo, R., Jia, J., Liu, M., & Zhu, L. (2021). Quantifying the lagged effects of climate factors on vegetation growth in 32 major cities of China. Ecological Indicators, 132(October), 108290. https://doi.org/10.1016/j.ecolind.2021.108290
23) Todaro, M.P. (2000). Economic Development, New York, Addition Wesley Longman.