Proposition of a Macro Health Index in the World
1Rodrigue N Tchoffo
, 1Dany T Dombou
, 1Achille T Tanga
, 2Guivis Z Nkemgha
ORCID ID: http://orcid.org/0000-0002-7694-76931 Doctorate Students in Faculty of Economics and Management at the University of Dschang, Cameroon
2P.h.D Doctor in Economics at the University of Dschang, Cameroon
https://doi.org/10.47191/ijefm/v3-i3-02
ABSTRACT:
This article provides an aggregated indicator of health in the world from a macroeconomic perspective. Using World Bank Data Based on a sample of 178 countries and regions covering the period 1995-2014, we adopt the principal component analysis (PCA) to estimate the new indicator. The main results are as follows: the new indicator belongs to -5.375 and 4.239, where -5.375 is the score recorded by the worst-ranked country while 4.239 is the highest score recorded. In 2014, 69% of the sample have an index greater than the average of zero because of the normalization of data in ACP. The remaining 31% are mainly found in Africa, mostly in the Sub-Saharan regions.
KEYWORDS:
Health Index Principal Component Analysis Health Utility Index
JEL Classification:
C02; C43; I12
REFERENCES:
1) Cadman, D., Goldsmith, C., Torrance, G., Boyle, M., & Furlong, W. (1986). Development of a health status index for
Ontario children. Hamilton, Ontario: McMaster University,Centre for Health Economics and Policy Analysis, 1986.Final
Report to Ontario Ministry of Health. Research grant DM648: (00633).
2) Cezar, R. (2012). Un nouvel indice du développement financier. Institut de Recherche pour le Développement; UMR 225
IRD - Paris-Dauphine; DT/2012-04.
3) Dahlgren, G., & Whitehead, M. (1991). Policies and Strategies to Promote Social Equity in Health. Stockholm, Sweden:
Institute for Futures Studies.
4) Danet. (2011). L’état de santé de la population en France - Suivi des objectifs annexés à la loi de santé publique.
direction de la recherche des études de l'évaluation et des statistiques; Rapport 2011.
5) Dinno, A. (2009). Implementing Horn’s parallel analysis for principal component analysis and factor analysis. The Stata
Journal 9, Number 2, pp. 291–298.
6) Fanshel, S., & Bush, J. (1970). A health status application to health services outcomes. search 1970;18:1021.
7) Furlong, W., Feeny, D., Torrance, G., & Barr, R. (2001). The Health Utilities Index (HUI) System for Assessing HealthRelated Quality of Life in Clinical Studies. McMaster University Centre for Health Economics and Policy Analysis;
Research Working Paper Series #01-02, March 2001.
8) Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. J. Educ. Psychol., Vol. 24,
pp. 417–441.
9) Jolliffe, I. (2002). Principal Component Analysis, Second Edition. Library of Congress Cataloging-in-Poblication Data; ISBN
0-387-95442-2.
10) Karlis, D., Saporta, G., & Spinakjs, A. (2003). A Simple Rule for the Selection of Principal Components. Communications
in Statistics - Theory and Applications, vol. 32, N°. 3, pp. 643-666.
11) Mo, F., Choi, B., Li, F., & Merrick, J. (2004). Using Health Utility Index (HUI) for Measuring the Impact on Health-Related
Quality of Life (HRQL) Among Individuals with Chronic Diseases. TheScientificWorldJOURNAL (2004) 4, 746–757.
12) OCDE. (2013). Education at a Glance 2013: OECD Indicators. OECD Publishing; http://dx.doi.org/10.1787/eag-2013-en.
13) OMS. (2003). Rapport sur la Santé dans le Monde. Organisation mondiale de la Santé; 1211 Genève 27, Suisse.
14) Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Phil. Mag. vol. 6, N°. 2, pp. 559–572.
15) Perronnin, M., Rochaix, L., & Tubeuf, S. (2006). Construction d’un indicateur continu d’état de santé agrégeant risque
vital et incapacité. institut de recherche et documentation en économie de la santé; Bulletin d’information en économie
de la santé n° 107 - Mai 2006; 10, rue Vauvenargues 75018 Paris.
16) Saporta, G. (2006). Probabilités analyse des données et statistique. Editions Technip 27 rue Ginoux, 75737 Paris Cedex
15, France; ISBN 2-7108-0814-5.
17) Torrance, G., Boyle, M., & Horwood, S. (1982). Application of multi-attribute utility theory to measure social
preferences for health states. Operations Research 1982;30:104.
18) Torrance, G., Feeny, D., Furlong, W., Barr, R., Zhang, Y., & Wang, Q. (1996). Multiattribute Utility Function for a
Comprehensive Health Status Classification System: Health Utilities Index Mark 2. Medical Care,Vol. 34, No. 7; pp. 702-
722.